
Motivation: Verifying and improving the robustness of re-ID models.
Approach: Learning adversarial examples to corrupt re-ID models.

n Domain shift and open-set property in re-ID requires attackers to
adapt to different envirnments, i.e., attackers should be universal.

n Recent works[1,2] on re-ID attack generate adversarial examples
individually and are not efficient enough.

How to achieve efficient ?: Universal Adversarial Perturbation[3].
Why UAP ?: Simplify the attack by adding UAP to queries.
How to achieve universal ?: Synthetic Data & Meta-Learning.
Why Virtual Data ?
(1) Easy to collect (2) Privacy-free (3) Balanced data distribution.
Why Meta-learning ? Improve universality.

Contributions:
(1) Meta-learning strategy. (2) Virtual data for optimization. (3)
Inspiration of improving robustness obtained from visualization.

Framework Experimental Results
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Figure 4: The visualization of some robust queries.

Figure 5: Visualizations of corrupted queries and obtained �.

are few occluded samples in the training data, the learned
perturbation will only capture the overall distribution of non-
occluded images but be sensitive to occluded images.

Therefore, during testing, we can try to add an occlud-
ing process before forwarding queries to the re-ID model,
for defending the adversarial samples, e.g., adding eras-
ing (Carmon et al. 2019; Zhong et al. 2020). Another kind
of robust query is caused by the camera shift in the dataset.
As shown in the third (before attack) and fourth (after at-
tack) rows of Fig. 4(c), the pedestrian in the query image
with a green T-shirt, changes to a blue T-shirt in its cor-
rectly matched nearest neighbor. The change of appearance
is caused by camera shift (Zhong et al. 2018) and has been
a long-standing problem in person re-ID. Both the source
data and the PersonX do not contain such kind of cases,
which causes our failure. In fact, each domain may contain
its own specific camera shift that is very different to other
domains. Therefore, we argue that adding domain-specific
camera shift to query images may help defend our attack,
which can be used as a reference for designing defense mod-
els of re-ID. Similar results and conclusions can also be
found in Duke (Fig. 4(d)).
Visualizations of � and Perturbed Images. In Fig. 5, we
visualize the obtained � and some perturbed images. Our
method is more efficient and flexible than MisRank, because
our method only requires a single perturbation for all queries
while MisRank needs to generate new perturbations for dif-

Table 4: SSIM scores of generated adversarial examples be-
tween (Wang et al. 2020a) and our method.

Duke Market
MisRank 0.1985 0.1889

Ours 0.2121 0.1963

Figure 6: Sensitive analysis of ✏.

ferent queries. We can see that under the same magnitude ✏
(✏ = 8), our generated adversarial examples are much better
than those of MisRank. The quality of generated adversarial
examples is further evaluated in Sec. 4.5 with SSIM.

4.5 Further Experiments
Image Quality. SSIM (Wang et al. 2004) is a kind of met-
ric to measure the similarity of two images and has been
widely used to evaluate the quality of GAN-made (Goodfel-
low et al. 2014) virtual images. A larger SSIM score between
synthetic and natural images indicates better quality and less
distortion. We, therefore, utilize SSIM to evaluate the de-
gree of distortion for adversarial examples. We report SSIM
scores in Tab. 4. Compared with MisRank, our method pro-
duces higher SSIM scores, indicating that our method can
generate higher quality adversarial images and achieve bet-
ter attack performance.
Sensitive Analysis. We change the value of ✏ from 8 to 16
and study the influence of perturbation budget. In Fig. 6, we
plot the curve of mAP and rank-1 scores under two settings
(Market!Duke and Duke!Market). The results show that
a larger ✏ can easily damage re-ID accuracies. However, to
make the obtained perturbation quasi-imperceptible, we sug-
gest using a small ✏ to attack real-world re-ID models if a
good attack results can be achieved.

5 Conclusion
In this paper, we propose a novel universal attack algo-
rithm for person re-ID, which is based on the virtual-guided
meta-learning. Our method takes the source dataset to be
meta-train and the synthetic PersonX dataset as meta-test.
By combining the gradients from both meta-train and meta-
test sets during meta-optimization, the obtained perturbation
can learn to generalize in unseen target domains and achieve
satisfactory results. The proposed method performs well on
three large-scale datasets with both IDE and PCB models. In
our future work, we consider applying our observations and
perspectives to design robust re-ID that can defend against
adversarial samples.

We visualize robust queries that survived from our attack and have 2 findings:
Finding 1: Occlusion is robust to attack. Suggestion 1: Erasing may improve robustness[4].

Finding 2: Camera styles are robust. Suggestion 2: Camera styles may improve robustness.
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Table 1: Results for attacking re-ID systems. We use our method to attack different backbones (IDE (Zheng, Yang, and Haupt-
mann 2016) and part-based PCB (Sun et al. 2018)), then compare our method with state-of-the-arts (MisRank (Wang et al.
2020a) and UAP-Retrieval (Li et al. 2019)). “Before Attack”: re-ID accuracies of unseen target model on target set.

Backbone Methods Duke ! Market Duke ! MSMT Market ! Duke Market ! MSMT
mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1

IDE

Before Attack 78.2 88.7 42.3 69.8 66.7 80.9 42.3 69.8
MisRank 28.2 38.6 11.7 30.3 36.7 48.8 11.1 28.5

MisRank + PersonX 38.5 51.5 20.9 55.8 43.4 71.2 12.4 31.0
MisRank (✏ = 16) 10.3 13.0 3.0 7.2 13.7 18.3 1.6 4.2

UAP-Retrieval 8.2 9.7 5.5 15.4 14.8 20.4 5.3 13.9
MetaAttack (Ours) 4.9 7.0 3.5 8.3 11.2 15.2 3.4 8.3

MetaAttack (Ours, ✏ = 16) 0.7 0.9 0.3 0.7 1.0 1.3 0.5 1.1

PCB

Before Attack 76.7 91.3 50.8 88.9 68.0 84.1 50.8 88.9
MisRank 48.1 64.2 21.1 47.7 31.2 45.4 14.4 28.5

MisRank + PersonX 52.4 70.6 18.8 39.6 38.0 51.4 18.8 39.6
MisRank (✏ = 16) 11.5 13.8 5.2 9.6 12.4 17.8 8.2 17.0

UAP-Retrieval 21.6 30.4 4.4 9.1 29.0 41.9 4.3 8.9
MetaAttack (Ours) 19.5 28.2 4.2 8.7 26.9 39.9 3.8 8.2

MetaAttack (Ours, ✏ = 16) 4.5 5.9 0.6 1.4 4.1 6.6 0.9 1.9

Table 2: Ablation study on the proposed virtual-guided
meta-learning algorithm.

No. Duke ! MSMT Market ! MSMT Extra Data Meta
mAP rank-1 mAP rank-1 Real PersonX Learning

1 5.6 14.3 5.8 14.9 ⇥ ⇥ ⇥
2 5.1 14.5 5.7 14.3 X ⇥ ⇥
3 4.8 10.4 5.0 12.6 X ⇥ X
4 4.6 9.9 5.5 14.2 ⇥ X ⇥
5 3.5 8.3 3.4 8.3 ⇥ X X

4.2 Ablation Study
To show the effectiveness of the proposed method, we con-
duct experiments by adding extra training data and meta-
learning into the baseline. Results with IDE model are re-
ported in Tab. 2. The first row (No.1) is the baseline that
only uses the basic losses functions (Sec. 3.2) on the train-
ing data. For the extra real data, we use Market when using
Duke as the source domain, vice versa.
The effectiveness of meta-learning. To verify the signif-
icance of the meta-learning strategy, we compare with the
variant that directly trained with the source data and the ex-
tra data. From the comparison of No.2 vs No.3 and No.4 vs
No.5, we can observe that 1) directly combing the source
and extra data brings limited improvement; and 2) training
with the meta-learning strategy can consistently improve the
attack results and universality of learned perturbation.
The benefit of virtual data in meta-learning. Another
important component of our method is adopting a virtual
dataset instead of a real one during meta-learning. The com-
parison of No.3 vs No.5 shows that virtual-guided meta-
learning outperforms the real-guided one. For example,
when using Duke as the source domain, virtual-guided meta-
learning (No.5) reduces the mAP to 3.5%, which is lower
than real-guided one (No.3) by 1.3%. These results indicate
that using a dataset with less biased factors can improve the
universality of learned perturbation.

Table 3: Results on source domain.

Backbone Method Duke Market
mAP rank-1 mAP rank-1

IDE
Before Attack 66.7 80.9 78.2 88.7
UAP-Retrieval 4.2 9.9 3.6 4.5

Ours 3.6 6.4 3.1 3.4

PCB
Before Attack 68.0 84.1 76.7 91.3
UAP-Retrieval 14.3 20.3 10.7 15.1

Ours 11.2 16.5 10.9 15.4

4.3 Performance on Source Domain
In Tab. 3, we report results on the testing set of source do-
main and compare our MetaAttack with UAP-Retrieval for
both IDE and PCB models. Tab. 3 shows that our model
can effectively corrupt the accuracies of the ranking list on
the source domain, and can achieve better results than UAP-
Retrieval in most settings. Since UAP-Retrieval uses almost
the same basic loss functions to our MetaAttack, it can be re-
garded as the reduction of MetaAttack, which does not use
virtual-guided meta-learning. Then, we can conclude that
our MetaAttack can also improve the university of pertur-
bation in the source domain.

4.4 Visualization
In this section, we visualize the obtained � and some per-
turbed query images to give an intuitive presentation of the
proposed MetaAttack algorithm.
Robust Queries in MetaAttack. Our MetaAttack can ef-
fectively corrupt re-ID accuracies with slight modifications
to query images. However, it remains several robust queries
that can defend our attack. To find out their common at-
tributes, we show some examples in Fig. 4(a) and (b). All
the experiments in this part use the IDE model.

We observe two kinds of situations that may help defend
our attack. The first kind of robust query is caused by oc-
clusion and we visualize its ranking lists before and after
attack in the first and second rows of Fig. 4(c). Since there

Table 1: Results for attacking re-ID systems. We use our method to attack different backbones (IDE (Zheng, Yang, and Haupt-
mann 2016) and part-based PCB (Sun et al. 2018)), then compare our method with state-of-the-arts (MisRank (Wang et al.
2020a) and UAP-Retrieval (Li et al. 2019)). “Before Attack”: re-ID accuracies of unseen target model on target set.

Backbone Methods Duke ! Market Duke ! MSMT Market ! Duke Market ! MSMT
mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1
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Before Attack 78.2 88.7 42.3 69.8 66.7 80.9 42.3 69.8
MisRank 28.2 38.6 11.7 30.3 36.7 48.8 11.1 28.5

MisRank + PersonX 38.5 51.5 20.9 55.8 43.4 71.2 12.4 31.0
MisRank (✏ = 16) 10.3 13.0 3.0 7.2 13.7 18.3 1.6 4.2

UAP-Retrieval 8.2 9.7 5.5 15.4 14.8 20.4 5.3 13.9
MetaAttack (Ours) 4.9 7.0 3.5 8.3 11.2 15.2 3.4 8.3

MetaAttack (Ours, ✏ = 16) 0.7 0.9 0.3 0.7 1.0 1.3 0.5 1.1
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Before Attack 76.7 91.3 50.8 88.9 68.0 84.1 50.8 88.9
MisRank 48.1 64.2 21.1 47.7 31.2 45.4 14.4 28.5

MisRank + PersonX 52.4 70.6 18.8 39.6 38.0 51.4 18.8 39.6
MisRank (✏ = 16) 11.5 13.8 5.2 9.6 12.4 17.8 8.2 17.0
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Table 2: Ablation study on the proposed virtual-guided
meta-learning algorithm.

No. Duke ! MSMT Market ! MSMT Extra Data Meta
mAP rank-1 mAP rank-1 Real PersonX Learning

1 5.6 14.3 5.8 14.9 ⇥ ⇥ ⇥
2 5.1 14.5 5.7 14.3 X ⇥ ⇥
3 4.8 10.4 5.0 12.6 X ⇥ X
4 4.6 9.9 5.5 14.2 ⇥ X ⇥
5 3.5 8.3 3.4 8.3 ⇥ X X

4.2 Ablation Study
To show the effectiveness of the proposed method, we con-
duct experiments by adding extra training data and meta-
learning into the baseline. Results with IDE model are re-
ported in Tab. 2. The first row (No.1) is the baseline that
only uses the basic losses functions (Sec. 3.2) on the train-
ing data. For the extra real data, we use Market when using
Duke as the source domain, vice versa.
The effectiveness of meta-learning. To verify the signif-
icance of the meta-learning strategy, we compare with the
variant that directly trained with the source data and the ex-
tra data. From the comparison of No.2 vs No.3 and No.4 vs
No.5, we can observe that 1) directly combing the source
and extra data brings limited improvement; and 2) training
with the meta-learning strategy can consistently improve the
attack results and universality of learned perturbation.
The benefit of virtual data in meta-learning. Another
important component of our method is adopting a virtual
dataset instead of a real one during meta-learning. The com-
parison of No.3 vs No.5 shows that virtual-guided meta-
learning outperforms the real-guided one. For example,
when using Duke as the source domain, virtual-guided meta-
learning (No.5) reduces the mAP to 3.5%, which is lower
than real-guided one (No.3) by 1.3%. These results indicate
that using a dataset with less biased factors can improve the
universality of learned perturbation.

Table 3: Results on source domain.

Backbone Method Duke Market
mAP rank-1 mAP rank-1

IDE
Before Attack 66.7 80.9 78.2 88.7
UAP-Retrieval 4.2 9.9 3.6 4.5

Ours 3.6 6.4 3.1 3.4

PCB
Before Attack 68.0 84.1 76.7 91.3
UAP-Retrieval 14.3 20.3 10.7 15.1

Ours 11.2 16.5 10.9 15.4

4.3 Performance on Source Domain
In Tab. 3, we report results on the testing set of source do-
main and compare our MetaAttack with UAP-Retrieval for
both IDE and PCB models. Tab. 3 shows that our model
can effectively corrupt the accuracies of the ranking list on
the source domain, and can achieve better results than UAP-
Retrieval in most settings. Since UAP-Retrieval uses almost
the same basic loss functions to our MetaAttack, it can be re-
garded as the reduction of MetaAttack, which does not use
virtual-guided meta-learning. Then, we can conclude that
our MetaAttack can also improve the university of pertur-
bation in the source domain.

4.4 Visualization
In this section, we visualize the obtained � and some per-
turbed query images to give an intuitive presentation of the
proposed MetaAttack algorithm.
Robust Queries in MetaAttack. Our MetaAttack can ef-
fectively corrupt re-ID accuracies with slight modifications
to query images. However, it remains several robust queries
that can defend our attack. To find out their common at-
tributes, we show some examples in Fig. 4(a) and (b). All
the experiments in this part use the IDE model.

We observe two kinds of situations that may help defend
our attack. The first kind of robust query is caused by oc-
clusion and we visualize its ranking lists before and after
attack in the first and second rows of Fig. 4(c). Since there

Tab 2. Ablation study on the proposed virtual-guided
meta-learning algorithm.

(a) Robust queries in Market (b) Robust queries in Duke

(c) Ranking lists of two (d) Ranking lists of two
robust queries in Market robust queries in in Duke

Figure 4: The visualization of some robust queries.

Figure 5: Visualizations of corrupted queries and obtained �.

are few occluded samples in the training data, the learned
perturbation will only capture the overall distribution of non-
occluded images but be sensitive to occluded images.

Therefore, during testing, we can try to add an occlud-
ing process before forwarding queries to the re-ID model,
for defending the adversarial samples, e.g., adding eras-
ing (Carmon et al. 2019; Zhong et al. 2020). Another kind
of robust query is caused by the camera shift in the dataset.
As shown in the third (before attack) and fourth (after at-
tack) rows of Fig. 4(c), the pedestrian in the query image
with a green T-shirt, changes to a blue T-shirt in its cor-
rectly matched nearest neighbor. The change of appearance
is caused by camera shift (Zhong et al. 2018) and has been
a long-standing problem in person re-ID. Both the source
data and the PersonX do not contain such kind of cases,
which causes our failure. In fact, each domain may contain
its own specific camera shift that is very different to other
domains. Therefore, we argue that adding domain-specific
camera shift to query images may help defend our attack,
which can be used as a reference for designing defense mod-
els of re-ID. Similar results and conclusions can also be
found in Duke (Fig. 4(d)).
Visualizations of � and Perturbed Images. In Fig. 5, we
visualize the obtained � and some perturbed images. Our
method is more efficient and flexible than MisRank, because
our method only requires a single perturbation for all queries
while MisRank needs to generate new perturbations for dif-

Table 4: SSIM scores of generated adversarial examples be-
tween (Wang et al. 2020a) and our method.

Duke Market
MisRank 0.1985 0.1889

Ours 0.2121 0.1963
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Figure 6: Sensitive analysis of ✏.

ferent queries. We can see that under the same magnitude ✏
(✏ = 8), our generated adversarial examples are much better
than those of MisRank. The quality of generated adversarial
examples is further evaluated in Sec. 4.5 with SSIM.

4.5 Further Experiments
Image Quality. SSIM (Wang et al. 2004) is a kind of met-
ric to measure the similarity of two images and has been
widely used to evaluate the quality of GAN-made (Goodfel-
low et al. 2014) virtual images. A larger SSIM score between
synthetic and natural images indicates better quality and less
distortion. We, therefore, utilize SSIM to evaluate the de-
gree of distortion for adversarial examples. We report SSIM
scores in Tab. 4. Compared with MisRank, our method pro-
duces higher SSIM scores, indicating that our method can
generate higher quality adversarial images and achieve bet-
ter attack performance.
Sensitive Analysis. We change the value of ✏ from 8 to 16
and study the influence of perturbation budget. In Fig. 6, we
plot the curve of mAP and rank-1 scores under two settings
(Market!Duke and Duke!Market). The results show that
a larger ✏ can easily damage re-ID accuracies. However, to
make the obtained perturbation quasi-imperceptible, we sug-
gest using a small ✏ to attack real-world re-ID models if a
good attack results can be achieved.

5 Conclusion
In this paper, we propose a novel universal attack algo-
rithm for person re-ID, which is based on the virtual-guided
meta-learning. Our method takes the source dataset to be
meta-train and the synthetic PersonX dataset as meta-test.
By combining the gradients from both meta-train and meta-
test sets during meta-optimization, the obtained perturbation
can learn to generalize in unseen target domains and achieve
satisfactory results. The proposed method performs well on
three large-scale datasets with both IDE and PCB models. In
our future work, we consider applying our observations and
perspectives to design robust re-ID that can defend against
adversarial samples.

Fig 1. Sensitivity analysis of 𝝐.
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are few occluded samples in the training data, the learned
perturbation will only capture the overall distribution of non-
occluded images but be sensitive to occluded images.

Therefore, during testing, we can try to add an occlud-
ing process before forwarding queries to the re-ID model,
for defending the adversarial samples, e.g., adding eras-
ing (Carmon et al. 2019; Zhong et al. 2020). Another kind
of robust query is caused by the camera shift in the dataset.
As shown in the third (before attack) and fourth (after at-
tack) rows of Fig. 4(c), the pedestrian in the query image
with a green T-shirt, changes to a blue T-shirt in its cor-
rectly matched nearest neighbor. The change of appearance
is caused by camera shift (Zhong et al. 2018) and has been
a long-standing problem in person re-ID. Both the source
data and the PersonX do not contain such kind of cases,
which causes our failure. In fact, each domain may contain
its own specific camera shift that is very different to other
domains. Therefore, we argue that adding domain-specific
camera shift to query images may help defend our attack,
which can be used as a reference for designing defense mod-
els of re-ID. Similar results and conclusions can also be
found in Duke (Fig. 4(d)).
Visualizations of � and Perturbed Images. In Fig. 5, we
visualize the obtained � and some perturbed images. Our
method is more efficient and flexible than MisRank, because
our method only requires a single perturbation for all queries
while MisRank needs to generate new perturbations for dif-

Table 4: SSIM scores of generated adversarial examples be-
tween (Wang et al. 2020a) and our method.

Duke Market
MisRank 0.1985 0.1889

Ours 0.2121 0.1963
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ferent queries. We can see that under the same magnitude ✏
(✏ = 8), our generated adversarial examples are much better
than those of MisRank. The quality of generated adversarial
examples is further evaluated in Sec. 4.5 with SSIM.

4.5 Further Experiments
Image Quality. SSIM (Wang et al. 2004) is a kind of met-
ric to measure the similarity of two images and has been
widely used to evaluate the quality of GAN-made (Goodfel-
low et al. 2014) virtual images. A larger SSIM score between
synthetic and natural images indicates better quality and less
distortion. We, therefore, utilize SSIM to evaluate the de-
gree of distortion for adversarial examples. We report SSIM
scores in Tab. 4. Compared with MisRank, our method pro-
duces higher SSIM scores, indicating that our method can
generate higher quality adversarial images and achieve bet-
ter attack performance.
Sensitive Analysis. We change the value of ✏ from 8 to 16
and study the influence of perturbation budget. In Fig. 6, we
plot the curve of mAP and rank-1 scores under two settings
(Market!Duke and Duke!Market). The results show that
a larger ✏ can easily damage re-ID accuracies. However, to
make the obtained perturbation quasi-imperceptible, we sug-
gest using a small ✏ to attack real-world re-ID models if a
good attack results can be achieved.

5 Conclusion
In this paper, we propose a novel universal attack algo-
rithm for person re-ID, which is based on the virtual-guided
meta-learning. Our method takes the source dataset to be
meta-train and the synthetic PersonX dataset as meta-test.
By combining the gradients from both meta-train and meta-
test sets during meta-optimization, the obtained perturbation
can learn to generalize in unseen target domains and achieve
satisfactory results. The proposed method performs well on
three large-scale datasets with both IDE and PCB models. In
our future work, we consider applying our observations and
perspectives to design robust re-ID that can defend against
adversarial samples.

Fig 2. Visualizations of corrupted queries
and obtained 𝜹.

Table 1: Results for attacking re-ID systems. We use our method to attack different backbones (IDE (Zheng, Yang, and Haupt-
mann 2016) and part-based PCB (Sun et al. 2018)), then compare our method with state-of-the-arts (MisRank (Wang et al.
2020a) and UAP-Retrieval (Li et al. 2019)). “Before Attack”: re-ID accuracies of unseen target model on target set.

Backbone Methods Duke ! Market Duke ! MSMT Market ! Duke Market ! MSMT
mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1

IDE

Before Attack 78.2 88.7 42.3 69.8 66.7 80.9 42.3 69.8
MisRank 28.2 38.6 11.7 30.3 36.7 48.8 11.1 28.5

MisRank + PersonX 38.5 51.5 20.9 55.8 43.4 71.2 12.4 31.0
MisRank (✏ = 16) 10.3 13.0 3.0 7.2 13.7 18.3 1.6 4.2

UAP-Retrieval 8.2 9.7 5.5 15.4 14.8 20.4 5.3 13.9
MetaAttack (Ours) 4.9 7.0 3.5 8.3 11.2 15.2 3.4 8.3

MetaAttack (Ours, ✏ = 16) 0.7 0.9 0.3 0.7 1.0 1.3 0.5 1.1

PCB

Before Attack 76.7 91.3 50.8 88.9 68.0 84.1 50.8 88.9
MisRank 48.1 64.2 21.1 47.7 31.2 45.4 14.4 28.5

MisRank + PersonX 52.4 70.6 18.8 39.6 38.0 51.4 18.8 39.6
MisRank (✏ = 16) 11.5 13.8 5.2 9.6 12.4 17.8 8.2 17.0

UAP-Retrieval 21.6 30.4 4.4 9.1 29.0 41.9 4.3 8.9
MetaAttack (Ours) 19.5 28.2 4.2 8.7 26.9 39.9 3.8 8.2

MetaAttack (Ours, ✏ = 16) 4.5 5.9 0.6 1.4 4.1 6.6 0.9 1.9

Table 2: Ablation study on the proposed virtual-guided
meta-learning algorithm.

No. Duke ! MSMT Market ! MSMT Extra Data Meta
mAP rank-1 mAP rank-1 Real PersonX Learning

1 5.6 14.3 5.8 14.9 ⇥ ⇥ ⇥
2 5.1 14.5 5.7 14.3 X ⇥ ⇥
3 4.8 10.4 5.0 12.6 X ⇥ X
4 4.6 9.9 5.5 14.2 ⇥ X ⇥
5 3.5 8.3 3.4 8.3 ⇥ X X

4.2 Ablation Study
To show the effectiveness of the proposed method, we con-
duct experiments by adding extra training data and meta-
learning into the baseline. Results with IDE model are re-
ported in Tab. 2. The first row (No.1) is the baseline that
only uses the basic losses functions (Sec. 3.2) on the train-
ing data. For the extra real data, we use Market when using
Duke as the source domain, vice versa.
The effectiveness of meta-learning. To verify the signif-
icance of the meta-learning strategy, we compare with the
variant that directly trained with the source data and the ex-
tra data. From the comparison of No.2 vs No.3 and No.4 vs
No.5, we can observe that 1) directly combing the source
and extra data brings limited improvement; and 2) training
with the meta-learning strategy can consistently improve the
attack results and universality of learned perturbation.
The benefit of virtual data in meta-learning. Another
important component of our method is adopting a virtual
dataset instead of a real one during meta-learning. The com-
parison of No.3 vs No.5 shows that virtual-guided meta-
learning outperforms the real-guided one. For example,
when using Duke as the source domain, virtual-guided meta-
learning (No.5) reduces the mAP to 3.5%, which is lower
than real-guided one (No.3) by 1.3%. These results indicate
that using a dataset with less biased factors can improve the
universality of learned perturbation.

Table 3: Results on source domain.

Backbone Method Duke Market
mAP rank-1 mAP rank-1

IDE
Before Attack 66.7 80.9 78.2 88.7
UAP-Retrieval 4.2 9.9 3.6 4.5

Ours 3.6 6.4 3.1 3.4

PCB
Before Attack 68.0 84.1 76.7 91.3
UAP-Retrieval 14.3 20.3 10.7 15.1

Ours 11.2 16.5 10.9 15.4

4.3 Performance on Source Domain
In Tab. 3, we report results on the testing set of source do-
main and compare our MetaAttack with UAP-Retrieval for
both IDE and PCB models. Tab. 3 shows that our model
can effectively corrupt the accuracies of the ranking list on
the source domain, and can achieve better results than UAP-
Retrieval in most settings. Since UAP-Retrieval uses almost
the same basic loss functions to our MetaAttack, it can be re-
garded as the reduction of MetaAttack, which does not use
virtual-guided meta-learning. Then, we can conclude that
our MetaAttack can also improve the university of pertur-
bation in the source domain.

4.4 Visualization
In this section, we visualize the obtained � and some per-
turbed query images to give an intuitive presentation of the
proposed MetaAttack algorithm.
Robust Queries in MetaAttack. Our MetaAttack can ef-
fectively corrupt re-ID accuracies with slight modifications
to query images. However, it remains several robust queries
that can defend our attack. To find out their common at-
tributes, we show some examples in Fig. 4(a) and (b). All
the experiments in this part use the IDE model.

We observe two kinds of situations that may help defend
our attack. The first kind of robust query is caused by oc-
clusion and we visualize its ranking lists before and after
attack in the first and second rows of Fig. 4(c). Since there

Tab 3. Results on source domain.

Experimental Settings
Train：
Optimize UAP with source and virtual data.
Test:
Directly test UAP on target datasets that have not
been used in training phase.


