Learning to Distinguish Samples for Generalized Category Discovery
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Tab. 3 Ablation Study

(2) Moreover, the inaccurate pseudo labels may hinder the further
improvement of GCD accuracies.

B Contributions

(a) DINO (b) GCD
Conclusion: Features learned with our method is more discriminative and

shows clear inter-class boundary than others.

(c) Ours Conclusions:

* Our method achieves competitive results and can be further incorporated into SoTA
methods for better accuracies under both “k-konwn” and “k-unknown™ scenario.

* Ablation study show the efficacy of each component. Moreover, visualization of

Contact US NMI show the efficacy of NGCN and CVCS in terms of clustering.

(1) We construct sub-graphs based on each labelled instance’s k-
nearest neighbors and optimize Neighbor Graph Convolutional Network
(NGCN) to extract neighbor-wise relations for pseudo labelling. NGCN
IS then used to predict pseudo labels of unlabelled data.

(2) We propose Cross-View Consistency Strategy (CVCS) to locate and
exclude noisy labels from training, which is achieved by comparing
clusters from two different clustering algorithms.
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(3) NGCN and CVCS are plug-and-play modules, which can be easily
incorporated into other GCD methods for better accuracies.

Scan QR code for code and other resources.




