
Definition: Using partially labelled data to optimize model and recognize 
known / unknown categories [a].
Approach: Assigning pseudo-labels for representation learning.

n Background
(1) Concurrent methods [a,b] predict pseudo-labels based on pairwise 
similarities, while the overall relationships within each instance’s 
neighbors are largely overlooked.
(2) Moreover, the inaccurate pseudo labels may hinder the further 
improvement of GCD accuracies.
n Contributions
(1) We construct sub-graphs based on each labelled instance’s k-
nearest neighbors and optimize Neighbor Graph Convolutional Network 
(NGCN) to extract neighbor-wise relations for pseudo labelling. NGCN 
is then used to predict pseudo labels of unlabelled data.
(2) We propose Cross-View Consistency Strategy (CVCS) to locate and 
exclude noisy labels from training, which is achieved by comparing 
clusters from two different clustering algorithms.
(3) NGCN and CVCS are plug-and-play modules, which can be easily 
incorporated into other GCD methods for better accuracies. 

Framework Experiments

[a] Vaze et al. Generalized Category Discovery. CVPR’22.
[b] Pu et al. Dynamic Conceptional Contrastive Learning for Generalized 
Category Discovery. CVPR’23.
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Step 1: Optimizing NGCN with kNN of labelled data. 

Step 2: Adopting NGCN to predict linkage of unlabelled data for clustering.

Step 3: Using CVCS and another clustering method to exclude noisy labels.

Step 4: Optimizing GCD model to recognize known / unknown categories.  

Conclusions:
• Our method achieves competitive results and can be further incorporated into SoTA

methods for better accuracies under both “k-konwn” and “k-unknown” scenario.
• Ablation study show the efficacy of each component. Moreover, visualization of

NMI show the efficacy of NGCN and CVCS in terms of clustering.

Conclusion: Features learned with our method is more discriminative and 
shows clear inter-class boundary than others.
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Fig. 1 Quantitative results for
(a) NGCN prediction accuracy
(b) NMI for clusters before and 
after using CVCS


