

Learning to Distinguish Samples for Generalized Category Discovery

Fengxiang Yang^{*1}, Nan Pu^{*2}, Wenjing Li^{3,4}, Zhiming Luo¹, Shaozi Li¹, Nicu Sebe², Zhun Zhong^{*3,4}

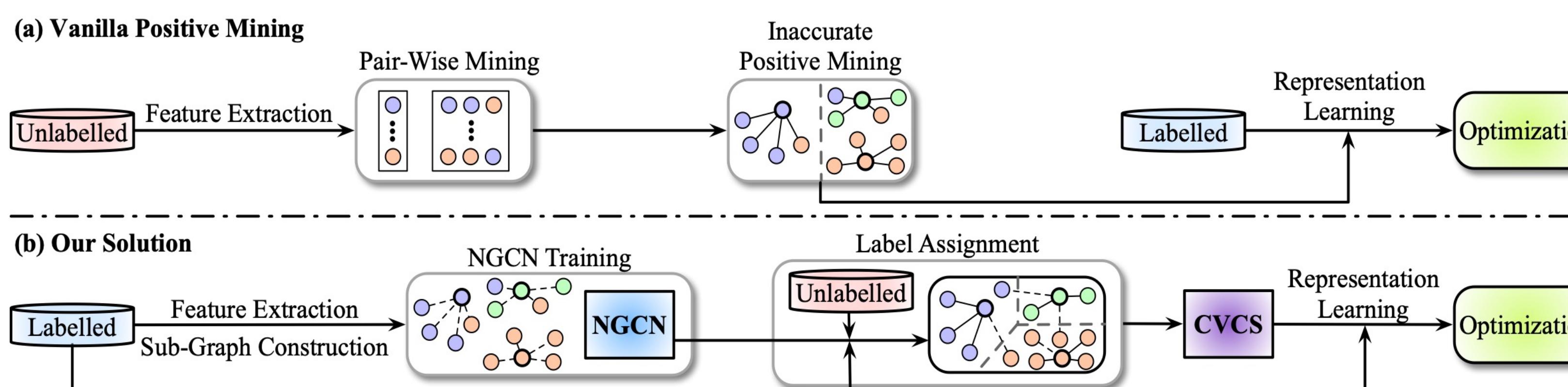
¹Xiamen University ²University of Trento ³Hefei University of Techology ⁴University of Nottingham

Problem Formulation

Definition: Using partially labelled data to optimize model and recognize known / unknown categories [a].

Approach: Assigning pseudo-labels for representation learning.

Contributions



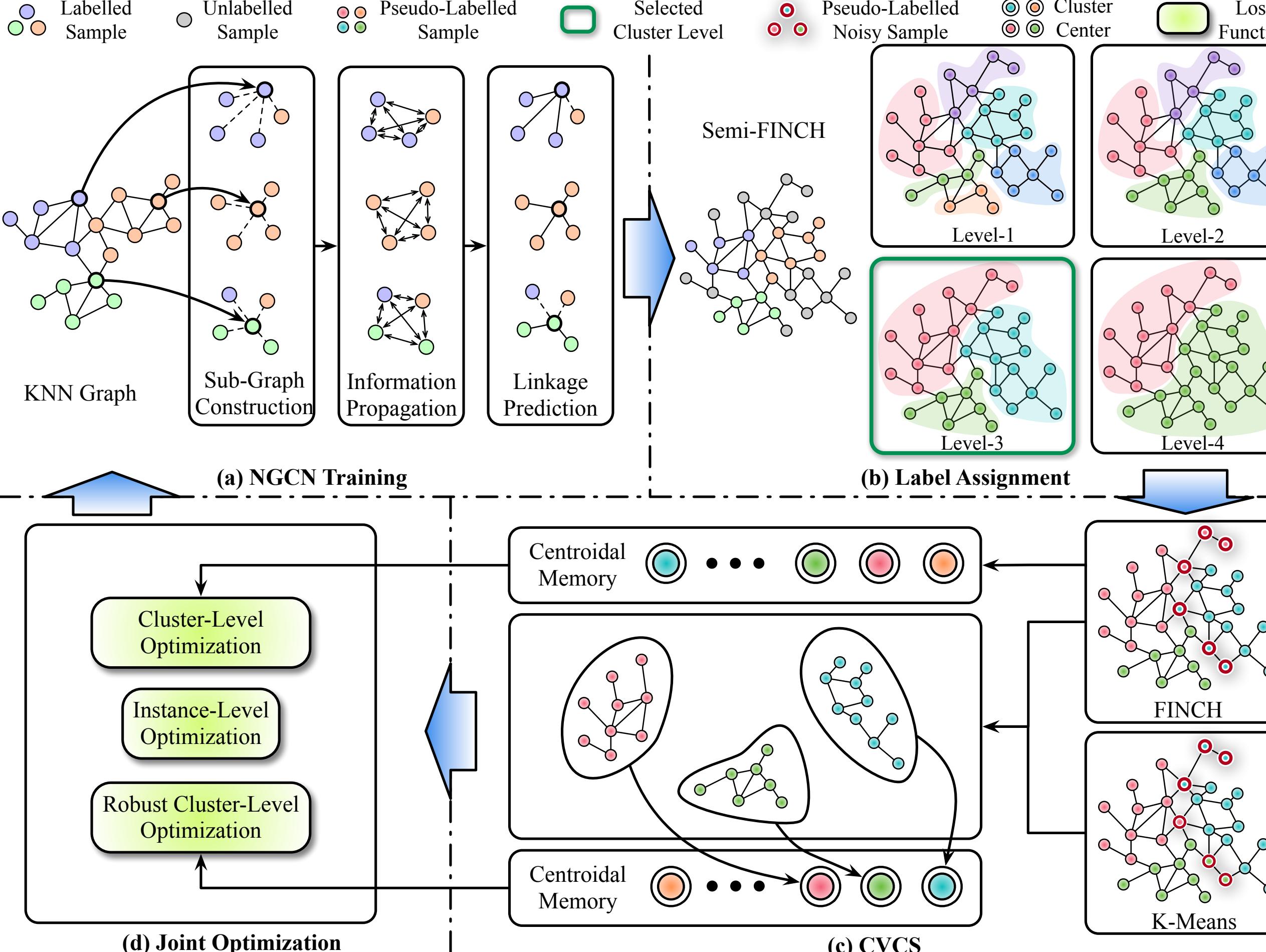
Background

- Concurrent methods [a,b] predict pseudo-labels based on pairwise similarities, while the overall relationships within each instance's neighbors are largely overlooked.
- Moreover, the inaccurate pseudo labels may hinder the further improvement of GCD accuracies.

Contributions

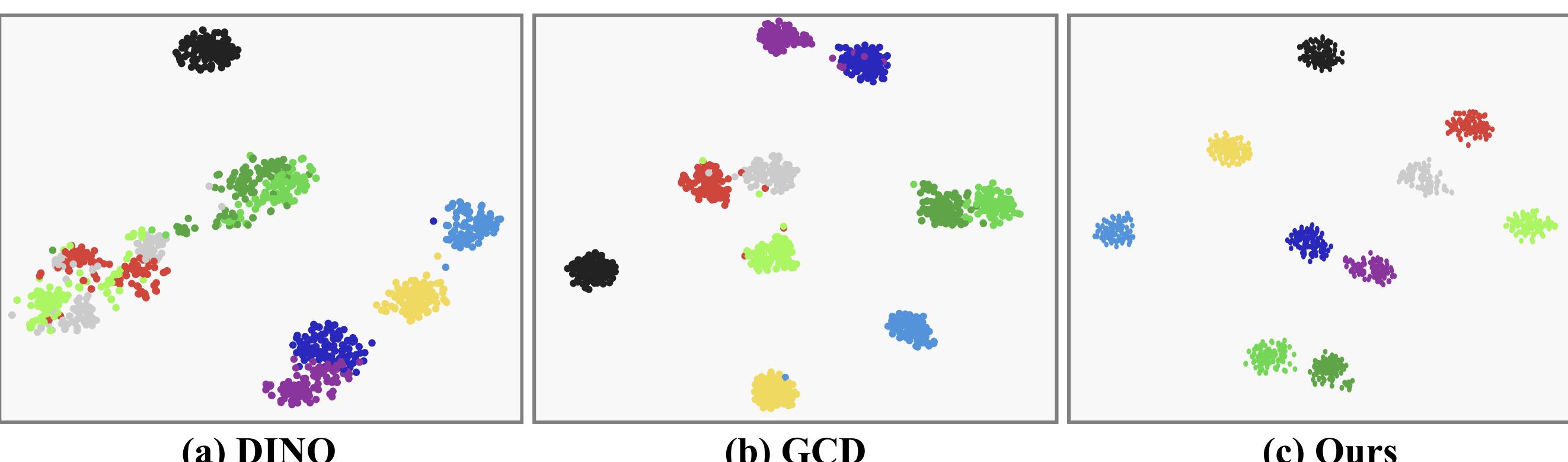
- We construct sub-graphs based on each labelled instance's k -nearest neighbors and optimize Neighbor Graph Convolutional Network (NGCN) to extract neighbor-wise relations for pseudo labelling. NGCN is then used to predict pseudo labels of unlabelled data.
- We propose Cross-View Consistency Strategy (CVCS) to locate and exclude noisy labels from training, which is achieved by comparing clusters from two different clustering algorithms.
- NGCN and CVCS are plug-and-play modules, which can be easily incorporated into other GCD methods for better accuracies.

Framework



Step 1: Optimizing NGCN with k NN of labelled data.
 Step 2: Adopting NGCN to predict linkage of unlabelled data for clustering.
 Step 3: Using CVCS and another clustering method to exclude noisy labels.
 Step 4: Optimizing GCD model to recognize known / unknown categories.

Visualization



Conclusion: Features learned with our method is more discriminative and shows clear inter-class boundary than others.

Contact Us

If you have any problem, please send an email to us
 (yangfx@stu.xmu.edu.cn) or ask in Github.

Scan QR code for code and other resources.

Experiments

Methods	CF10			CF100			IN100		
	All	Old	New	All	Old	New	All	Old	New
UNO+ [10]	68.6	98.3	53.8	69.5	80.6	47.2	70.3	95.0	57.9
RankStats+ [13]	46.8	19.2	60.5	58.2	77.6	19.3	37.1	61.6	24.8
GCD [35]	91.5	97.9	88.2	73.0	76.2	66.5	74.1	89.8	66.3
XCon [9]	96.0	97.3	95.4	74.2	81.2	60.3	77.6	93.5	69.7
DCCL [28]	96.3	96.5	96.9	75.3	76.8	70.2	80.5	90.5	76.2
This Work	96.5	97.6	94.4	74.6	76.5	69.4	78.1	91.3	70.5

Methods	Pets			CUB			SCars		
	All	Old	New	All	Old	New	All	Old	New
UNO+ [10]	-	-	-	35.1	49.0	28.1	35.5	70.5	18.6
RankStats+ [13]	-	-	-	33.3	51.6	24.2	28.3	61.8	12.1
GCD [35]	80.2	85.1	77.6	51.3	56.6	48.7	39.0	57.6	29.9
XCon [9]	86.7	91.5	84.1	52.1	54.3	51.0	40.5	58.8	31.7
DCCL [28]	88.1	88.2	88.0	63.5	60.8	64.9	43.1	55.7	36.2
This Work	87.2	91.2	89.6	61.3	60.8	62.1	44.3	58.2	39.1

Tab. 1 Results under “ k -unknown” Scenario

Methods	CF100			IN100		
	All	Old	New	All	Old	New
SimGCD [37]	80.1	81.2	77.8	83.0	93.1	77.9
PromptCAL [41]	81.2	84.2	75.3	83.1	92.7	78.3
Ours + PromptCAL	82.5	86.6	78.2	83.8	93.2	79.0

Methods	CUB			SCars		
	All	Old	New	All	Old	New
SimGCD [37]	60.3	65.6	57.7	53.8	71.9	45.0
PromptCAL [41]	62.9	64.4	62.1	50.2	70.1	40.6
Ours + PromptCAL	63.8	68.4	63.7	54.7	69.6	45.5

Tab. 2 Results under “ k -known” Scenario

Method	Attributes			CUB-200			Pets		
	NGCN	CVCS	All	Old	New	All	Old	New	
Baseline (L_{ins})	✗	✗	51.3	56.6	48.7	80.2	85.1	77.6	
NGCN (L_{ins} and L_{ccl})	✓	✗	58.3	56.4	59.2	83.3	82.3	83.8	
CVCS (L_{ins} and L_{rel})	✗	✓	53.5	57.2	52.8	82.6	80.2	83.7	
Ours (L_{ins} , L_{ccl} , and L_{rel})	✓	✓	61.3	60.8	62.1	87.2	91.2	86.8	

Tab. 3 Ablation Study

Conclusions:

- Our method achieves competitive results and can be further incorporated into SoTA methods for better accuracies under both “ k -konwn” and “ k -unknown” scenario.
- Ablation study show the efficacy of each component. Moreover, visualization of NMI show the efficacy of NGCN and CVCS in terms of clustering.

References

[a] Vaze et al. Generalized Category Discovery. CVPR'22.
 [b] Pu et al. Dynamic Conceptional Contrastive Learning for Generalized Category Discovery. CVPR'23.

