
Motivation: Training Generalized re-ID under Federated Constraint.
Approach: Improve Local Generalization by Local Data Stylization.

n Most DG methods [1,2] cannot be applied to decentralized scenario.
n Challenge： Lack of information for image stylization.
n Solution: Improving local generalization with stylized data.

Contributions:

(1) Style Transformation Module (Stylize Data with re-param trick [3]). 

(2) Diversity-authenticity Co-constraint Stylization (Generate Useful Data).

Framework Experimental Results
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(a) Client-Server Collabirative Learning
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(b) Diversity-Authenticity Co-constrained Stylization for Local Training
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(b) t-SNE visualizations for “MS+C2+C3→M” 

(a) Original and Transformed Images in “MS+C2+C3→M” 
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(2) Reducing Global Uncertainty for Authenticity
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(1) Enlarging Wasserstein Distance for Diversity

Enlarging Wasserstein Distance 
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Step1: Local Train with STM-augmented Data (see (b)).

Step2: Collaborative Learning under Federated Scenario (see (a)). 

H (fG(x)) < H (fG(x’)) < H (fL(x’))

Tab. 1. Comparison with SoTA

• We compare four types of methods under federated learning and achieves SoTA performance.
• We also evaluate our method with different backbones (ResNet and ViT) to show its efficacy.

Tab. 2. Ablation Study

• Ablation study shows the efficacy of each component.
• Check more experiments in our paper !

STM tends to generate diverse data at the beginning of optimization, but is liable to 

focus on data authenticity at the end of optimization.


