

Problem Definition Optimization under Federated Scenario Traditional Optimization $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ Motivation: Training Generalized re-ID under Federated Constraint. Approach: Improve Local Generalization by Local Data Stylization. **Our Solution & Contributions** Most DG methods [1,2] cannot be applied to decentralized scenario. Challenge: Lack of information for image stylization. **Solution**: Improving local generalization with stylized data. (1) Enlarging Wasserstein Distance for Diversity STM $(\hat{\mu}, \hat{\sigma}^2)$ Scaling & Shifting ! Normalize Image $x' = \hat{\sigma} * \bar{x} + \hat{\mu}$ $\overline{x} = (x - \mu) / \sigma$ **Enlarging Wasserstein Distance** (2) Reducing Global Uncertainty for Authenticity Local Model High Uncertainty Local Model Local-side Local-side High Uncertainty **Global Model Global Model**

Contributions:

 $H(f_G(x)) < H(f_G(x')) < H(f_L(x'))$

(1) Style Transformation Module (Stylize Data with re-param trick [3]).

(2) Diversity-authenticity Co-constraint Stylization (Generate Useful Data).

Diversity-Authenticity Co-constrained Stylization for Federated Domain Generalization in Person Re-identification

Fengxiang Yang^{1,2}, Zhun Zhong³, Zhiming Luo¹, Yifan He⁴, Shaozi Li¹, Nicu Sebe² ¹Xiamen University ²University of Trento ³University of Nottingham ⁴RecoNova Technologies

Framework

М	e

Tab. 1. Comparison with SoTA									
	MS + C3		C2 + C3		MS + C2				
Methods	$+C2 \rightarrow M$		$+M \rightarrow MS$		$+M \rightarrow C3$				
	mAP	rank-1	mAP	rank-1	mAP	rank-1			
Single Model (1)	23.3	47.5	2.7	8.8	18.0	18.5			
Single Model (2)	13.2	31.1	1.7	6.0	21.6	22.5			
Single Model (3)	18.9	41.2	3.3	10.0	10.2	11.2			
MOON	26.8	51.1	4.8	14.5	20.9	22.5			
SCAFFOLD	26.0	50.5	5.3	15.8	22.9	26.0			
FedPav	25.4	49.4	5.2	15.5	22.5	24.3			
FedReID	30.1	53.7	4.5	13.7	26.4	26.5			
MixStyle	31.2	53.5	5.5	16.0	28.6	31.5			
CrossStyle	32.5	59.6	4.6	14.0	27.8	28.0			
SNR	32.7	59.4	5.1	15.3	28.5	30.0			
Ours	36.3	61.2	10.4	27.5	30.7	34.1			
SNR+Ours	37.7	65.9	11.6	29.4	33.6	37.5			
Joint	32.2	58.6	5.6	16.3	29.5	29.0			
FedPav (ViT)	37.4	62.6	14.6	33.7	23.7	25.0			
CrossStyle (ViT)	41.4	65.8	17.9	40.8	31.0	38.4			
Ours (ViT)	45.4	70.7	20.3	44.2	36.6	42.1			

We compare four types of methods under federated learning and achieves SoTA performance. We also evaluate our method with different backbones (ResNet and ViT) to show its efficacy.

Method	Attributes			MS+C2 +C3 $\rightarrow M$		MS+M +C2 \rightarrow C3	
	ϕ	L_{div}	L_{au}	mAP	rank-1	mAP	rank-1
Baseline	×	×	×	25.4	49.4	22.5	24.3
RS	\checkmark	×	×	25.1	50.6	20.4	22.8
DC	\checkmark	\checkmark	×	31.9	57.1	29.1	30.0
AC	\checkmark	×	\checkmark	34.5	59.7	27.3	28.0
DACS	\checkmark	\checkmark	\checkmark	36.3	61.2	30.7	34.1

Method	Attributes		$MS+C2 \\ +C3 \rightarrow M$		$MS+M \\ +C2 \rightarrow C3$		
	ϕ	L_{div}	L_{au}	mAP	rank-1	mAP	rank-1
Baseline	×	×	×	25.4	49.4	22.5	24.3
RS	\checkmark	×	×	25.1	50.6	20.4	22.8
DC	\checkmark	\checkmark	×	31.9	57.1	29.1	30.0
AC	\checkmark	×	\checkmark	34.5	59.7	27.3	28.0
DACS	\checkmark	\checkmark	\checkmark	36.3	61.2	30.7	34.1

Ablation study shows the efficacy of each component. Check more experiments in our paper !

Mixture of Experts. CVPR'21.

AAAI Association for the Advancemen of Artificial Intelligence

Experimental Results

Tab. 2. Ablation Study

References

[1] Dai et al. eneralizable Person Re-identification with Relevance-aware

[2] Zhao et al. Learning to generalize unseen domains via memory-

based multi-source meta-learning for person re-identification. CVPR'21

[3] Kingma et al. Auto-encoding variational bayes. In ICLR 2014.